Clustering of Wind Power Patterns Based on Partitional and Swarm Algorithms
نویسندگان
چکیده
منابع مشابه
Fuzzy Partitional Clustering Algorithms
Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more and more research results on them have been developed in the literature. In order to study these algorithms systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and constraints on membership function or cluster centers. Moreover, the adva...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولDifferential evolution and particle swarm optimisation in partitional clustering
In recent years, many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Surprisingly, very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms for numerical optimization, which are hardly known outside the heuristic...
متن کاملGenetic Algorithms in Partitional Clustering: A Comparison
Three approaches to partitional clustering using genetic algorithms (GA) are compared with k-means and the EM algorithm for three real world datasets (Iris, Glass and Vowel). The GA techniques differ in their encoding of the clustering problem using either a class id for each object (GAIE), medoids to assign objects to the class associated with the nearest medoid (GAME), or parameters for multi...
متن کاملOn Partitional Clustering of Malware
In this paper we fully describe a novel clustering method for malware, from the transformation of data into a manipulable standardised data matrix, finding the number of clusters until the clustering itself including visualisation of the high-dimensional data. Our clustering method deals well with categorical data and clusters the behavioural data of 17,000 websites, acquired with Capture-HPC, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3001437